

Jeff’s Laboratory

NM09 – Servo Electro-Mechanical Actuator Databook
Comments Revision Date Author

Initial Release A January 7, 2025 J. Mays
Update model wrapper

in Simulink
B February 26, 2025 J. Mays

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

2

1. References
1. https://www.servocity.com/hs-65mg-servo/

2. Purpose

This document describes the HS-65MG servo electro-mechanical actuator (servos for short) that is used to
actuate the TVC and aft fins within the New Estes model rocket. First, there will be discussion of the servo
hardware, and then the monte-carlo simulation model will be presented.

3. Hardware

The HiTec HS-65MG Electro-Mechanical Servo actuator (servo) is a micro class servo used for various hobbyist
and robotic applications. This servo will be used to actuate the effectors on the New Mays rocket.

Figure 1: HS-65MG Servo [1]

The table below indicates some specs about this servo [1]. These specs were used to develop the model in
Matlab / Simulink for monte-carlo simulations.

Spec Value
Voltage Range 4.8V – 6.0V
No-Load Speed (4.8V) 0.14sec/60°
No-Load Speed (6.0V) 0.11sec/60°
Stall Torque (4.8V) 25 oz-in (1.8 kg.cm)
Stall Torque (6.0V) 31 oz-in (2.2 kg.cm)
Max PWM Signal Range 610-2360μsec
Travel per µs (Stock) .108°/μsec
Max Rotation (Stock) 189°
Pulse Amplitude 3-5V
Direction w/ Increasing PWM Signal Clockwise (opposite our convention)
Deadband Width 4µs
Feedback Style 5KΩ Potentiometer
Weight 0.39oz (11.2g)
Update Freq. 50 Hz

The HS-65MG servo is a closed system, which takes a pulse width modulated (PWM) signal as an input and
turns it into a setpoint for a potentiometer to track. A typical internal control system for one of these servos
appears in the following figure.

https://www.servocity.com/hs-65mg-servo/

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

3

Figure 2: Servo Internal Control System

On the physical system, there are 3 wires that source the servo with everything it needs to operate. Other than
the power and ground wires, the third wire provides the internal decoder with the analog PWM signal. For our
application, this PWM signal is generated from the main processor on the main flight control board. By
providing the correct PWM signal, we can expect the servo’s horn to move to a pre-determined position.

The HS-65MG servo has a PWM range of 610 to 2360 μsec, with a center μsec of 1485. We can set this as the
nominal PWM command such that we center the servo control horn within each effector in the vehicle. We can
also use this PWM to correspond to 0 degrees in our future model.

4. Modeling & Simulation

The modeling of one of these servos is no trivial feat. Each servo from different manufacturers is different,
and the system is difficult to characterize without extensive testing. All we can really do is check the available
datasheets from the servo manufacturer and hope it is relatively correct. Some slow-motion videos and small
tests were performed, but ultimately it is very difficult to correctly model the expected behavior of these
servos without a massive test campaign.

Ultimately, I decided to model the servos in Simulink with the datasheet I had in an attempt to be “close
enough.” Later efforts could be made to attempt and model the elements in Figure 2, but ultimately it would be
an exercise of randomly updating parts of the model to try and match the datasheet. Figure 3 illustrates the
high-level library block of the servo model, which will be referenced many times in the future fully integrated
simulation.

Figure 3: HS-65MG Simulink Library Block

The above library block contains a parameterization file that is run for each instance of the servo library block.
This not only sets constant parameters for the simulation, but also updates tunable parameters for the monte-
carlo simulation such that we disperse the performance of the servo to ensure system robustness. The
initialization code for the model is shown below.

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

4

function [servo, servo_tunable] = loadHS65MGServoParameters(mc, servo_num)
% Load Servo parameters
%
% Author: Jeff Mays

% Voltages
servo.min_voltage = 4.8 * C_V;
servo.max_voltage = 6.0 * C_V;

% Minimum operating voltage
servo.minimum_operating_voltage = 4.8 * C_V;

% Min/Max us
servo.min_us = 610; % Min microsecond accepted value
servo.max_us = 2360; % Max microsecond accepted value

% Nominal us
servo.nominal_us = 1485;

% Servo computational delay
servo.computational_delay = 1/50; % sec

% rad of rotation per microsecond
servo.rot_per_us = 0.108 * C_DEG; % 189.0 deg / (2360-610 us) = 0.108 deg/us

% us deadband
servo.rot_cmd_deadband = 4; % Deadband of servo controller

% Servo dynamics
wn = 20 * C_HZ;
zeta = sqrt(2)/2;
servo.dynamics.num = [0 0 wn^2];
servo.dynamics.den = [1 2*zeta*wn wn^2];

% Rate and accel filters (used to get rid of numeric issues. Breaks down
% the meaning of the signal, but this will be a known deficiency in the
% model...)
w = 5 * C_HZ;
z = sqrt(2)/2;
servo.filter.num = [0 0 w^2];
servo.filter.den = [1 2*z*w w^2];

% Servo angle limits
servo_tunable.min_angle = mc.disperse(['min_angle' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', -189.0/2 * C_DEG, ...
 'StdDev', 1 * C_DEG);
servo_tunable.max_angle = mc.disperse(['max_angle' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', +189.0/2 * C_DEG, ...
 'StdDev', 1 * C_DEG);

% Stall torques
servo_tunable.stall_torque_5V = mc.disperse(['stall_torque_5V' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', 0.1765 * C_N*C_M, ...
 'StdDev', 0.01 * C_N*C_M);
servo_tunable.stall_torque_6V = mc.disperse(['stall_torque_6V' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', 0.2189 * C_N*C_M, ...
 'StdDev', 0.01 * C_N*C_M);

% Rotation speed of unloaded servo
servo_tunable.no_load_rot_speed_5V = mc.disperse(['no_load_rot_speed_5V' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', 60.0/0.14 * C_DEG/C_SEC, ... % 60 degrees in 0.14 sec
 'StdDev', 15.0 * C_DEG/C_SEC);
servo_tunable.no_load_rot_speed_6V = mc.disperse(['no_load_rot_speed_6V' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', 60.0/0.11 * C_DEG/C_SEC, ... % 60 degrees in 0.11 sec
 'StdDev', 15.0 * C_DEG/C_SEC);

servo_tunable.angle_bias = mc.disperse(['angle_bias' num2str(servo_num)], ...
 'Dispersion', 'Normal', ...
 'Nominal', 0.0 * C_DEG, ...
 'StdDev', 0.33 * C_DEG); % This is bias in our tare accuracy

end

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

5

Opening the library block reveals the following Simulink code, shown in Figure 4 which uses the parameterized
variables in the initialization script.

Figure 4: HS-65MG Simulink Library Block Contents

Figure 5: HS-65MG Simulink Library Block/POWERED_SERVO

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

6

Figure 6: BUS_PACK

4.1. Model Validation

Before using the model explicitly for the full simulation, we must first develop a test environment to prove to
ourselves that the model works as intended. The model validation harness is shown in Figure 7.

Figure 7: Validation Harness

Using the monte-carlo tooling, I performed 301 simulations of the above harness and generated step and chirp
profiles to prove to myself that the behavior and tunable monte-carlo parameters were all behaving as
intended. The following two plots show evidence that the model works as intended. Additional validation tests
could be generated in the future to further validate the model.

JeffsLaboratory.com NM09 – Servo Electro-Mechanical Actuator Databook

7

Figure 8: Step Profile

Figure 9: Chirp Profile

